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Abstract 

In a previous paper [A multlvarlate notion of association, with 

a reliability application] random variables T.,T2,...,T  were defined 

to be associated  If each pair of non-decreasing functions F(T.. ,T2 T ) 

GCT. ,T2,... ,T ) have a non-negative covarlance. The properties of this 

definition were studied In the case that T. .T0 T  are finitely 
1 2    n 

discrete, and a sample application to reliability theory was discussed. 

Ir the present paper several equivalent definitions of the same notion of 

association for unrestricted T-,!*,...,!  are treated. The properties 

previously obtained. I.e. that association is preserved under the 

operations of extracting subsets, pooling Independent sets, and forming 

sets of non-decreasing functions, are shown to hold in general.  In 

addition, association Is shown to be preserved under limits in 

distribution.  Some additional applications of association are discussed, 

e.g. previously published results of A. W. Kimball and H. Robblns are 

obtained. 
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1. Introduction 

In a previous paper [1] we studied a notion of multlvarlate 

association for random variables using the definition 

(1.1) Random variables T.,T„,...,!  are aesoaiated  If i    z n 

Cov[F(T),G(T)]   > 0,    where    T-  (T. ,T_,...,T ),    for all «w «s* — »«# _L        ^ JJ 

pairs    F,G    of non-decreasing functions, 

where    F    non-decreasing means    F(js) £ F^)    whenever    s. £t., 

1*1,...,n.    We considered only the case In which the random variables 

T-,T2f»«»T     are finitely discrete, I.e.  take a finite number of values. 

For such variables the expectations    EFC^T),  EG(T),    and    EF(T)G(T) 

Involved In    Cov[F(£) ,G(£)]    always exist, and  (1.1)  Is consequently 

a well-behaved definition. 

We showed In the finitely discrete case that association has a 

number of fundamental properties: 

(P1)    Any subset of a set of associated random variables is also a 

set of associated random variables. 

(?-)    If two sets of associated vandom variables are independent of 

one another,  then their union is a set of associated random 

variables. 

(P~)    The set consisting of a single random variable is associated. 
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(P^)    If   T.^j,...,!     are aeeooiated, then any aet of non-deoreaeing 

funotione   S. (T), S« (T),..., S (T)   are aesooiated. 

Some discussion of the Implications of the properties of association, 

and a sample application, are given In [1].    The purpose of the present 

paper Is to consider several "well-behaved" definitions of association for 

general,  I.e. unrestricted, random variables, and to show that they are 

equivalent;  to show that properties    P., P», Po,    and    P,    hold In the 

general case, and to obtain the additional property 

(P5)    If   T^k),T^k) T^k)    are aeeooiated for each    k   and 

(k) T       -»• S ■  (S, ,S0,...,S )    in distribution,  then    S, ,S„,...,S m* *      x 1'  2 n 1    ^ n 

are aeeooiated; 

and finally to Indicate that a suitably qualified version of   (1.1) could 

be used as a definition of association in the general case. 

2.    Equivalent definitions of association for general random variables 

Perhaps the most elementary way to define association for unrestricted 

random variables is 

(2.1)    Random variables    T-.T-,...,!      are aeaoaiated tt    Cov[r(T),MT)]  >. 0 

for all pairs    r,A    of binary, non-decreasing functions. 

In [1]  definition  (2.1) is shown equivalent to definition (1.1) for finitely 

discrete random variables. 
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We will also consider the definition 

(2.2) Random variables T. ,T,,...,T are aeeoaiated if it n 

Cov[U(T)tV(T)]  >_ 0   for all pairs    U.V    of bounded, continuous, 

non-decreasing functions. 

Finally we Introduce, for each random variable    T.    and fixed    tt 

the binary Indicator variable    XAt)    such that    X.Ct) ■ 1    If    T.  >  t, 

X  (t)  ■ 0    If    T   ^ t.    We then consider the definition 

(2.3)    Random variables    T.tT2t...fT     are aeeoaiated If, for every 

choice of    k    and    t. ,t2,... ,t. ,    the binary random variables In 

the array 

x1(t1) x1(t2) ••• x1(tk) 

x2(t1) x2(t2) ••• x2(tk) 

Xn(tl)Xn(t2)   - W 

are associated according to (2.1). 

Property   P.    is an immediate consequence of each of the definitions 

(2.1),   (2.2), and  (2.3).     The proof of property    ?2    given in [1]  can be 

applied to show it holds for each of (2.1),   (2.2), and (2.3).    In [1] 

property    P.    was proved for definition (2.3).    The proof of property    P, 

given in [1] applies to show that it holds for definition (2.1).    Property 

P5    holds for definition  (2.2), by application of the Helly-Bray theorem. 

We will show that the three definitione  (2.1),   (2.2), and (2.3) ore 

equivalent.    Our plan for the proof will be to show that association 
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according to (2.3)  Implies association according to (2.2), and then to 

show that association according to (2.2)  Implies association according to 

(2.1).    That association by (2.1) Implies association by (2.3)  Is 

Immediate, since property    P,    holds for  (2.1), and each binary Indicator 

X. (t)    Is a non-decreasing function of    T..    Given that definitions (2.1), 

(2.2), and (2.3) are equivalent, it follows that properties    P.,  P2, P3, 

P,,    and   P-    hold for each of the definitions,  since each property has 

been shown to hold for at least one definition. 

Theorem 2.1.    If   T.,!«,...^     are aesooiated according to 

definition (2.3),  then    Cov[U(T),V(T)]  >_ 0    for all pairs    U,V    of 

bounded, continuous, non-deareasing functions. 

Proof.    Since we can add large enough constants to each of a pair 

of bounded functions to make them non-negative without changing their 

covarlance,  it suffices to prove the theorem for pairs    U,V    of non- 

negative, bounded,  continuous, non-decreasing functions. 

Since the binary random variables in the array   J((t^ ■ {X, (t  ); 

1-1,...,n,J"l,...,k}    are associated according to  (2.1), 

CovEF^t^fGJ^)]  >^ o,    for any pair    F,G    of non-decreasing functions 

(by our previous observation that definition (2.1)  Implies definition 

(1.1)  in the finitely discrete case). 

Consider some choice of    t,  < t- <•••< t. ,    and define,  e.g. for 

U,    F(k)(T)  - 0    If any    X^t^ - 0,     1-1,...,n;     F(k)(T)  - U(£), where 

S1 - max{t  |X1(t  )-l},    if all   X^t^  - 1.    The functions    F(k) are 

non-negative and non-decreasing, viewed either as functions of   £ or as 
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functlons of jC(t^). Now let {t. »t»« • •. »t. } Increase with k to 

a countable, dense set In (-•,+»). Since U,V, and U • V are 

continuous, 0 < F(k) + U. 0 < G(k) f V, and 0 <^ F(k) • G(k) + U • V 

at each fixed value of T.  Since U,V, and U • V are bounded, by 

monotone convergence EF^(T) t EU(T), EG(k)(T) t EV(T), and 

EF(k)(T) • G(k)(T) f EU(T) • V(T). Thus 0 <^ Cov[F(k)(T) ,G(k) (T)] ■*> 

Cov[U(T),V(T)]. 

Lemma 2.2.  If T.,!«»».».!  are associated according -to definition 

(2.2), then Cov[*(T) ^(T)] >_ 0 for all pairs ♦,4' of binary, right 

continuous, non-decreasing functions. 

Proof. Consider e.g. ♦. Let A « {t|«(t)"l}. Let d(t,A) be the 

(k) 
Euclidean distance from a point t    to the set A. Define U  (T^) - 0 

if d(T.A) >_ 1/k,  U(k)(T) - 1 - k • d(T,A)  If d(T,A) < 1/k.  Each 

(k) 
function U   Is non-negative, bounded,  aontinuou8t  and non-deoreasing, 

(k) 
Since * is right continuous, A Is closed. We have U  (t) - 1, if 

t e A, all k, and U(k)(t) v 0, as k -► «, if t e Ac. Thus 

1 >_ U(k) v ♦, as k -► ». 

As in Theorem 2.1, by monotone convergence, we conclude that 

CovIflCTMß)]  > 0. 

Theorem 2.3.    If   T^T«,...,!     are aeeooiated aaoording to definition 

(2.2), then   T-.Tj,..,,!     are aseooiated aaoording to definition (2.1). 

Proof.    Consider e.g.     r.    Let    A ■ UJ^C£^■1^•    We can fin<1 a 

compact set    CCA    such that    P[C] + e >^ P[A].    Let 

C   ■  {c + tic e C^.   > 0,...,t    > 0}.    Then    C C C   C A   and    C      is closed. 
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Let *(£)  - 1 If X e c+» ♦(!) " 0 if I e (C+)C. The function ♦ 

is binary, right oontinuous,  and non-deoreaeingi    r >_ ♦; and 

E*(T) + e >.Er(T). Thus Cov[r(T) ,A(T)] 

>_ E^CT)*^) " {E*(T) + eMEYCX) + e} 1 Cov[*(T) ^(X) J " 2e - e2. 

Letting e -► 0 and using Lemma 2.2, we obtain Cov[r(T) ,A(T)] >_ 0. 

3. The covariance of arbitrary, non-decreasing functions 

We now prove a theorem which indicates that we could define association 

for general random variables in essentially the same way, i.e. by (1.1), 

that we defined it for finitely discrete random variables. 

Theorem 3.1. 1/ T^T«,...,! are assoaiated and   F,G are a pair 

of non-deareaeing functions such that    EF(T), EG(T), and   EF(T)G(jT) exist, 

then    Cov[F(T),G(T)] >_ 0. 

Proof.  That T..»^,...^  are associated implies, by P.,  that 

FC^T), G(T) are associated, which in turn implies, by P., that 

X_(s), XG(t) are associated for all s, t, where e.g. XF(s) * 1 if 

F(T) > s, X-,(s) - 0 if F(T) < s.  Thus Cov[X_(s) ,X_(t)] > 0, all s, t. 

The result follows from the identity 

(3.1)    Cov[F(T),G(T)] ' j    ]     Cov[XF(s),XG(t)]ds dt. 
—00  —00 

[See Lehmann (1966), who gives a convenient statement of (3.1) and a 

proof attributed to W. Hoeffding.  See also Marshall-Olkin (1966) for 

a comparable result on moment generating functions.] 
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4.    Applications 

Several Interesting applications may be obtained as a consequence 

of 

Theorem 4.1.    Let    T. ,T0,...,T     be associated.    Then   12 n 

(4.1a)      ni1 ltrT2 <  t2,....Tn < tn]  iTT".! P[Tilt1] 

and 

(4.ib)   pf^ > t1.T2 > t2,...,Tn > tn] ifT".! n^i > t1], 

for all    t. ,t2,... ,t  . 

Proof.  Let X (t ) = 1 If TJ > tj«  Then the binary random 

variables X. (t.),X„(t?),...,X (t ) are associated by P,. Using 

(2.3.2) and (2.3.1) of [1] we obtain (4.1a) and (4.1b), 

respectively. 

Partial sums [Robblns (1954)] 

Let T1,T2,...,T  be Independent random variables.  Then T.,T2,,..,T 

are associated by P2 and P-. Let S. ■ \   T., j=l,...,n.  Then 

S.,S0.....S  are associated by P,. Thus 1 2'  ' n y  4 

?[Sl <_ s1,S2 < s2 Sn <. sn] iTTj
11.! PtSj iSjl 

for all s.,Sp,...,s  by (4.1a). 
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Order statistics 

Let T. tT»»«»»!!  be a sample of size n, and S..,SH«*>*tS 

be the corresponding order statistics. Then T-jT«,...,!  are 

Independent and thus associated by P» and P-. Since each S. Is 

a non-decreasing function of T..^»*..,! , 8^82 S  are 

associated by P.. Thus (4.1a) and (A.lb) hold for S1,S2,...,S , 

and by P. also for every subset of S.^„••••«S . 

Multlvarlate exponential distribution 

Marshall and Olkln (1966) consider the multlvarlate exponential 

distribution with the distribution function F(s,.s-,.., ,s )  such that ± z    m 

(4.2) 1 - F(s1 ,s9,...,s ) » exp[->  X s, -}       X.,   max(s,,s1) 12    m       ^-j.i J J  ^j<k Jk    J k 

-A.»   max(s1,s9,... ,s ). 
iz.. .m    1 z    m 

As pointed out by Marshall and Olkln If random variables S-.S^,...^ 
i     / m 

are distributed according to  (4.2),  then there exist Independent, 

exponentially distributed random variables    T-,T0 T      such that 
i z    n 

S. =min(T.;i e A.), where A. C {l,2,...,n}.  Since T-,T_,...,T  are 
J       1     J J i Z     n 

independent and each S.  is a non-decreasing function of T-.T«»...^ , 

we obtain from Theorem 4.1 
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m 
(A.3a) 

and 

,(ör82 ^iTT^^Csj) 

m 
(4.3b)      1 - F(s1,s2 sm) > TT  U-FJCSJ)], 

where F.  is the marginal distribution function of S..  Marshall and 

Olkin discuss inequalities (4.3a) and (4.3b) for the bivariate exponential, 

and give a further, quantitative analysis of that case. 

Analysis of variance 

Kimball (1951) considers the case of analysis of variance in which 

two hypotheses are tested using the same error variance for each test. As 

an example of particular importance, he cites the case in which the effects 

of both rows and columns are to be tested.  As usually formulated, three 

quadratic forms, q1, q**  ^v are computed, independently distributed as 

2 
X  with n,, n0, n0 degrees of freedom respectively,  q.,  representing 

the sum of squares between rows,  q» the sum of squares between columns, 

and q- the sum of squares due to error. The likelihood ratio test 

statistics for testing the two hypotheses are 

q^n-L q2/n2 
F. ■ —;—   and   F0 « -r—,— . 
i  qg/tVj 2  £3^3 

The probability of making no errors of the first kind is 

P[F1 < F1 ,F2 < F2 ],  where F. (F2 )  is the 100a per cent point of the 

distribution of F^F-). Kimball proves 
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(4.4)    P[F1 <_ Fla.F2 < F2a] > P[F1 < Fla]P[F2 <. F^]. 

In other words, the assurance of no errors of the first kind is greater 

following the standard experimental procedure than if separate experiments 

had been performed. 

Klmball's result is an immediate consequence of Theorem 4.1 if we 

note that q,, q«, q»  are associated (since independent), and  F, , F^ 

are non-decreasing functions of q., q„, q» . 
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